Clinically Relevant Drug Interactions in HIV Treatment

Kristina M. Brooks, PharmD
Pharmacokinetics Fellow, NIH Clinical Center Pharmacy Dept.

Disclosures
- Presenter has no financial interest to disclose
- This continuing education activity is managed and accredited by Professional Education Services Group (PESG) in cooperation with the NIH Pharmacy Department. PESG, NIH, and all accrediting organizations do not support or endorse any product or service mentioned in this activity.
- PESG and NIH staff have no financial interest to disclose

Objectives
- Review mechanisms behind drug interactions with antiretroviral drugs (ARVs)
- Discuss recently approved ARV agents and key interactions of concern
- Identify interactions between ARVs and commonly prescribed medications and OTC products

Mechanisms of ARV Interactions

HIV Overview
- HIV is a retrovirus that infects essential cells within the immune system
 - Single stranded, positive sense, enveloped RNA virus
 - Infects CD4+ T cells, macrophages, and dendritic cells
- Chronic, untreated HIV infection progresses to acquired immunodeficiency syndrome (AIDS)
 - AIDS status defined by
 - CD4 count <200 cell/mm³
 - Development of ≥1 opportunistic infection
- No effective cure has been discovered → lifelong treatment with antiretroviral drugs (ARVs) is necessary

HIV Infection Course
Fundamentals of HIV Management

- All HIV-infected patients should be treated with ARV therapy
 - No longer based on CD4 count thresholds
 - Need 2-3 fully active agents from different drug classes
- Treatment goals
 - Suppress plasma HIV RNA
 - Restore and preserve immunologic function
 - Reduce HIV-associated morbidity and mortality
 - Prevent transmission of HIV

Drug Interactions in HIV

- ARVs are substrates, inhibitors, and inducers of several metabolic enzymes and transporters
 - ARV-ARV interactions very common
- Other concomitant non-HIV medications are also affected
- Increased longevity of HIV-infected patients → shifted need to management of comorbid conditions
 - Estimated that >50% of HIV-infected persons are 50 years of age or older
 - CV disease, metabolic disorders, non-HIV malignancies, and renal/liver dysfunction now more of a concern
Types of Drug Interactions

Pharmacodynamic
- Additive
- Synergistic
- Antagonistic

Pharmacokinetic
- Absorption
- Distribution
- Metabolism
- Elimination

Pharmacokinetic Interactions

Absorption

- pH dependence for drug dissolution
 - Ex: atazanavir, ripirvirine
- Chelation of drugs that bind to cationic active sites
 - Ex: integrase inhibitors
- Expression of CYP enzymes in the small intestine
- Intestinal transporters
 - Efflux: P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP)
 - Uptake: organic anion transporter (OAT)

Transporters

Image from: http://www.pnas.org/content/109/7/2251/F1.large.jpg (top), http://www.nature.com/nrd/journal/v9/n3/images/nrd3028-f1.jpg (bottom)

Distribution

Transporters

Substrates

<table>
<thead>
<tr>
<th>Transporter</th>
<th>Substrates</th>
<th>Inhibitors</th>
<th>Inducers</th>
<th>Efflux</th>
<th>Uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>OATP</td>
<td>Lipid-lowering agents (statins, ezetimibe), glyburide, rifampin, valsartan, olmesartan</td>
<td>Atazanavir, cobicistat, cyclosporine, gemfibrozil, lopinavir, ritonavir, saquinavir, tipranavir/ritonavir</td>
<td>Not known</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAT1</td>
<td>Captopril, furosemide, lamivudine, methotrexate, oseltamivir, tenofovir, zidovudine</td>
<td>Probenecid</td>
<td>Not known</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAT3</td>
<td>Acyclovir, ciprofloxacin, famotidine, furosemide, methotrexate, zidovudine, penicillin G, some statins</td>
<td>Probenecid, cimetidine, diclofenac</td>
<td>Not known</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inhibitors

- Aliskiren, colchicine, dabigatran etexilate, digoxin, DPP4-inhibitors, fexofenadine, immunosuppressants, maraviroc, posaconazole, ranolazine, talinolol, tolvaptan

Inducers

- Cardiac medications (ACEIs, ARBs, antiarrhythmics, CCBs), cobicistat, macrolides, cyclosporine, itraconazole, ketoconazole, lopinavir, ritonavir

Efflux

- P-gp: Aliskiren, colchicine, dabigatran etexilate, digoxin, DPP4-inhibitors, fexofenadine, immunosuppressants, maraviroc, posaconazole, ranolazine, talinolol, tolvaptan
- BCRP: Many antineoplastics (topotecan), rosuvastatin, sulfasalazine

Uptake

- OATP1B1: Lipid-lowering agents (statins, ezetimibe), glyburide, rifampin, valsartan, olmesartan
- OATP1B3: Atazanavir, cobicistat, cyclosporine, lopinavir, ritonavir, saquinavir, tipranavir/ritonavir
- OCT2: H2RAs, metformin, NMDA-antagonists, pindolol
- OAT1: Captopril, furosemide, lamivudine, methotrexate, oseltamivir, tenofovir, zidovudine
- OAT3: Acyclovir, ciprofloxacin, famotidine, furosemide, methotrexate, zidovudine, penicillin G, some statins

Metabolism

Elimination
- NRTIs primarily renally eliminated
 - Require dose adjustments in patients with renal insufficiency
 - Exception: abacavir
- Creatinine secretion inhibited by some ARVs → transient SCR increase
 - MATE1 by cobicistat
 - OCT2 by dolutegravir, rilpivirine, ritonavir
- Inhibition of renal uptake transporters can increase drug levels
 - P-gp and OATP1B1/3 by cobicistat, ritonavir

ARV Interaction Overview

Cobicistat (COBI)
- Newer PK enhancer without HIV activity
 - Dose of 150 mg once daily
 - Strong inhibitor of 3A4 > 2D6
 - Similar AEs to RTV-boosted regimens
- Coformulated into fixed dose combinations (FDCs)
 - EVG/c/TDF/FTC (Stribild) – approved Nov 2012
 - ATV/c (Evotaz) – approved Jan 2015
 - DRV/c (PrezCISION) – approved Jan 2015
 - EVG/c/TAF/FTC (Genvoya) – approved Nov 2015
COBI Interactions

- Potent inhibitor of CYP3A4
- Similar potency of 3A4 inhibition, weaker 2D6 vs. RTV
- Similar interactions to RTV assumed with 3A4 substrates
 - P-gp, BCRP, OATP1B1/3, MATE

- Interaction profile between RTV and COBI may vary
 - No induction of CYP enzymes
 - Substrates for enzymes induced by RTV may not be affected with a transition to COBI
 - COBI may yield stronger MATE inhibition than RTV
 - Similar IC50, but higher intracellular accumulation via OCT2 uptake into renal tubular cells
- Drug interaction studies comparing differences between RTV- and COBI-boosted atazanavir and darunavir are lacking at this time

Tenoforv alafenamide (TAF)

- Newly available prodrug form of tenofovir (TFV)
 - Converted inside target cell by cathepsin A
 - 90% lower systemic concentrations of TFV \(\rightarrow \) less renal and bone toxicity vs. TDF

TAF Formulations

- TAF available at two different doses depending on concomitants ARVs
 - 10 mg \(\rightarrow \) boosted with RTV or COBI
 - 25 mg \(\rightarrow \) unboosted regimens
- Four FDC formulations at various stages of development
 - Genvoya® (EVG/c/TAF/FTC) – approved Nov 2015
 - Alternative for Stribild
 - Odefsey® (RPV/TAF/FTC) – approved March 2016
 - Alternative for Complera
 - Descovy® (TAF/FTC) – application submitted
 - Alternative for Truvada
 - DRV/c/TAF/FTC – Ph3 trials, possible approval later in 2016

TAF Interactions

- TAF is increased 2.5-fold by boosted ARVs
 - Use 10 mg dose (\textbf{not} 25 mg)
- Intracellular metabolism by cathepsin A
 - TAF also inhibits cathepsin A \textbf{in vitro} \(\rightarrow \) contraindicated with certain hepatitis C protease inhibitors
- Substrate for P-gp, BCRP, OATP1B1/3
 - Inhibitors may increase TAF levels
 - Inducers may decrease TAF levels
- Weak inhibitor of OCT1 and MATE1
 - In vitro studies show weak inhibition of CYP3A

Common Interactions with ARVs

- 53 yo HIV-infected male presents to clinic with complaints of dizziness, disturbing dreams after restarting therapy with Atripla
 - Contains efavirenz/tenofovir/emtricitabine
- Current medication list
 - Atorvastatin 40 mg po daily
 - Atripla 1 tab po q HS
 - Lisinopril 20 mg po daily
 - Metformin 1000 mg BID with food
- The patient would like to change his ARV regimen
 - What would you recommend?
 - What interactions are you concerned about?

Patient Case #1
Antacids & Acid Suppressants

- Cautioned use with dolutegavir (DTG) specifically
 - DTG alone (Tivicay®)
 - DTG/abacavir/lamivudine (Triumeq®)
- DTG inhibits the renal transporter responsible for eliminating metformin (OCT2)
 - 79% increase in metformin AUC with DTG 50 mg q 24 hrs
 - vs. metformin 500 mg bid alone
 - 145% increase in metformin AUC with DTG 50 mg q 12 hrs
- Maximum metformin dose = 1,000 mg/day with concomitant use of DTG

Patient Case #1

- Regimen change from Atripla (efavirenz/tenofovir/emtricitabine)?
 - Atorvastatin 40 mg daily
 - 40 mg = 20 mg due to 3A4 induction by efavirenz
 - Efavirenz → dolutegravir or raltegravir?
 - Reduce dose to 20 mg to achieve similar effects
 - Efavirenz → darunavir/cobicistat or elvitegravir/cobicistat?
 - Reduce dose to 10 mg daily due to 3A4 inhibition
 - Lisinopril 20 mg daily
 - No change necessary
 - Metformin 2000 mg daily with food
 - Efavirenz → dolutegravir?
 - Maximum daily dose of 2000 mg
 - Pravastatin 20 mg daily
 - No adjustment
 - Pitavastatin 20 mg daily
 - No adjustment
 - Bupropion 150 mg bid
 - No adjustment
 - Simvastatin 40 mg daily
 - No data
 - Statins

Mineral Supplements

- Cationic minerals can reduce integrase inhibitor (INSTI) levels by 40-74% when coadministered
 - INSTIs are the only ARV drug class of concern → binds to Mg²⁺ in the HIV integrase enzyme
 - Applies to Ca²⁺, Fe²⁺, Al³⁺, Mg²⁺, and Zn²⁺ supplements
 - Sulfate and liquid bismuth subsalicylate can also interact
 - Extent of interaction with daily multivitamins unclear
- INSTIs must be taken 2 hrs before or 6 hrs after mineral supplements
 - Exception: dolutegavir can be given at the same time as Fe²⁺ or Ca²⁺ supplements if given with food

Statins

- PIs and elvitegravir/Cobi (EVG/c) can increase statin exposure
 - Efavirenz (EFV), etravirine (ETR), nevirapine (NVP) primarily decrease exposure
 - Do not exceed maximum statin doses to overcome induction

Anticoagulants & Antiplatelets

- Warfarin: CYP2C9 > 3A4
 - Monitor INR and adjust warfarin dose accordingly
 - Decreased warfarin levels possible with RTV-boosted PIs
 - Increased warfarin levels possible with etravirine
 - Avoid with 3A4 inhibitors & inducers
 - Rivaroxaban, apixaban, edoxaban: CYP3A4 and Pgp
 - Avoid with 3A4 inhibitors & inducers
 - Dabigatran: P-gp and MATE1
 - No induction of MATE1
 - Increases NO, may inhibit
 - INR increases
 - No adjustment
 - Clopidogrel: 2C9/19
 - Etravirine may prevent activation → do not coadminister
 - Warfarin: CYP2C9/19
 - Monitor INR and adjust warfarin dose accordingly
 - Decreased warfarin levels possible
 - No adjustment

- Antiplatelets
 - Apixaban, rivaroxaban, edoxaban: CYP3A4 and Pgp
 - Avoid with 3A4 inhibitors & inducers
Patient Case #2

- 34 yo male with recent diagnosis of HIV/AIDS
 - Initiated on Stribild (elvitegravir/cobicistat/tenofovir/emtricitabine)
 - Presented with cryptococcal meningitis, CMV encephalopathy
 - Neurological changes, agitation present despite effective therapy
 - Medical team decides to add on an antipsychotic
- What agent would you recommend?

Anticonvulsants

- Phenytoin, phenobarbital, carbamazepine, oxcarbazepine metabolized via CYP450 system
 - All are capable of CYP induction ➔ dual interaction with RTV-boosted PIs and NNRTIs
 - Many combinations are contraindicated or cautioned against
 - Consider alternatives if boosted PIs or NNRTIs required
 - Levetiracetam, lacosamide
 - Agents that undergo glucuronidation may be decreased by RTV-boosted PIs ➔ monitor drug levels
 - Valproic acid (+90% by UGT and beta-oxidation)
 - Lamotrigine (UGT1A4)

Antidepressants

- SSRIs, SNRIs, and TCAs metabolized via CYP2D6
 - Boosted PIs: start with lowest dose and titrate to effect
 - Darunavir/RTV: decreases paroxetine and sertraline AUC by 39-49%
 - Effects with Cobi unknown
 - Bupropion via 2B6
 - Efavirenz decreases levels by 55% ➔ titrate to effect
 - Trazodone via CYP3A4
 - 3-4 fold AUC increase with RTV administration
 - No data with Cobi but increased levels expected
 - May be used at low dose for sleep, titrate to effect
 - Mirtazapine could be considered as an alternative
 - Modifications to ARV regimen may require further dose adjustments in psych medications

Antipsychotics

- PIs and PK enhancers can alter concentrations of atypical antipsychotics
 - Nearly all are substrates for CYP3A4 and/or 2D6, some for 1A2, 2C19
 - Ritonavir (RTV)
 - Inhibits CYP3A4, 2D6 ➔ increased levels
 - Decreases levels of clarithromycin
 - Cobicistat
 - Inhibits CYP3A4, 2D6 ➔ increased levels expected, no data available
 - Numerous case reports documenting AEs following coadministration of antipsychotics + RTV-boosted PIs
 - EPS side effects, sedation, disorientation, significant weight gain develop quickly
 - Reversal of symptoms accomplished with discontinuation of antipsychotic or boosted PI

Anxiolytics & Hypnotics

- Anxiolytics
 - Alprazolam: avoid with PIs, no data with NNRTIs
 - Midazolam and triazolam: do not coadminister oral dose with efavirenz, or Cobi or RTV-boosted ARVs
 - Low interaction potential with lorazepam, oxazepam, temazepam ➔ alternative treatment options
- Hypnotics
 - Suvorexant (Belsomra®): contraindicated with 3A4 inhibitors
 - Zolpidem (Ambien®): 3A4 and other pathways ➔ increased levels possible with boosted PIs

Patient Case #2

- Treatment was initiated with quetiapine 50 mg daily
 - Partial response, further dose increases desired
 - Concern over boosting by Cobi ➔ guideline recommendation to use 1/6th dose
- Transitioned to olanzapine 12.5 mg daily
 - Metabolized by UGT, 1A2, 2D6 ➔ lower interaction risk
 - No data with Cobi-boosted regimens
 - Changed ARV regimen to Triumeq (dolutegravir/abacavir/tenofovir)
 - Reduce risk of drug interactions with future psych medications
Azole Antifungals

- Low dose fluconazole can be used with ARV regimens
- Itraconazole, ketoconazole, and itraconazole are 3A4 substrates and inhibitors → bi-directional interactions with PIs and NNRTIs
 - Certain combinations should be avoided or require dose adjustments
 - Consult guidelines and monitor azole levels
 - PIs increased azole and PI levels may result, monitor for PI toxicity
 - NNRTIs: decreased azole and increased NNRTI levels possible
 - Exception: ritonavir
- Voriconazole metabolized by CYP 3A4
 - RTV decreases AUC by 39% → monitor levels or consider alternatives
 - COBI-boosted ARVs may increase levels
 - Efavirenz decreases AUC by 77%: increase voriconazole to 400 mg BID
 - Decrease efavirenz from 600 mg to 300 mg daily (bi-directional interaction)

Corticosteroids

- Systemic corticosteroids altered by boosted PIs and NNRTIs
 - Prednisone AUC changes by 30% with 3A4 inhibition/induction
 - Dexamethasone decreases NNRTI AUCs → consider alternatives if >1-fold increase in AUC
 - COBI-boosted ARVs may increase levels
 - Inhaled and nasal corticosteroids are boosted by RTV and COBI → do not coadminister, concern for iatrogenic Cushion’s syndrome
 - Inhaled fluticasone + PI/r = 36-fold increase in AUC
 - Beclomethasone is currently the only alternative if a boosted regimen is necessary
 - Metabolized by esterases (not CYP450) → 2-fold increase with RTV alone (not clinically significant), unchanged with darunavir/RTV
- Intraarticular steroid injections can also be boosted with RTV or COBI-containing regimens → do not coadminister

Patient Case #3

- 35 yo male received epidural injections of triamcinolone acetonide (x2) for lumbosacral back pain at outside facility
 - ARV regimen: lopinavir/RTV BID + tenofovir/emtricitabine
 - Reported facial swelling within 1 week of injection
 - 1 month post-injection: BP 157/100, weight gain of 1.4 kg, “moon face” and “buffalo hump”, poor wound healing

Oral contraceptives can be affected
- Barrier methods needed if levels are decreased
- Depomedroxyprogesterone and IUDs do not appear to have significant interactions with ARVs
- May be preferred methods, but further studies are needed

Hormones

- Oral contraceptives can be affected
 - Barrier methods needed if levels are decreased
 - Depomedroxyprogesterone and IUDs do not appear to have significant interactions with ARVs
- Ethinyl estradiol (EE)
 - Decreased with PI/r, EFV, and NVP, (?)COBI
 - ATV/r use 0C with 35+ mcg EE
 - Increased with ATV 400 mg daily → max dose 30 mcg
- Progestins
 - Increased with ATV/r, (?)COBI
 - Monitor for acne, decreased HDL, and insulin resistance
 - Decreased with EFV and NVP
References

Resources for HIV Drug Interactions

- Liverpool: www.hivdruginteractions.org
- Toronto General Hospital: http://www.hivclinic.ca/main/drugs_interact.html
- Micromedex: www.micromedexsolutions.com

Conclusions

- Drug interactions can pose significant problems for HIV-infected patients on ARV therapy
- Aging HIV population is requiring chronic medication therapy for non-HIV-associated conditions
- Several drug interactions have been identified and characterized
- Many more are based on known interactions mediated by similar mechanisms → not always clear if similar or different
- Further research is still needed
- Full evaluations of all concomitant medications need to be conducted at every patient encounter

Questions?

Obtaining CME/CE Credit

If you would like to receive continuing education credit for this activity, please visit: http://nih.cds.pesge.com